Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

نویسندگان

  • Jae-Ick Kim
  • Subhashree Ganesan
  • Sarah X Luo
  • Yu-Wei Wu
  • Esther Park
  • Eric J Huang
  • Lu Chen
  • Jun B Ding
چکیده

Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parkinson’s Disease—Apoptosis and Dopamine Oxidation

Tyrosine hydroxylase, monoamine oxidase and aldehyde dehydrogenase all form oxygen radicals as part of their mechanisms of action. These oxygen radicals damage dopaminergic neurons in the substantianigra of the midbrain and cause them to die by a process of necrosis or apoptosis. Oxygen radicals quickly abstract hydrogen from DNA forming DNA radicals and causing DNA fragmentation, activation of...

متن کامل

Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis

Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and co...

متن کامل

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

Localization of GABA(B) receptors in midbrain monoamine containing neurons in the rat.

The localization of gamma-aminobutyric acid (GABA)(B) receptors in the midbrain of the rat was examined in multiple labeling studies using antibodies directed against the GABA(B) receptor and either tryptophan hydroxylase or tyrosine hydroxylase. Almost all of the serotonergic and dopaminergic cell bodies in the midbrain displayed GABA(B) receptor-like immunoreactivity. Conversely, most neurons...

متن کامل

Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thioca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 350 6256  شماره 

صفحات  -

تاریخ انتشار 2015